Entity API

Author Kodmyran AB

Introduction

The entity API provides access to all objects and functionality within Kodmyran
Commerce. This part of the API is also used by the graphical administration
tools but can be very hard to work with without a very good understanding of
entities, their relationships etc. This APT is based upon a concept of entities
where you can create, update and delete objects (CRUD). Unless you really need
the full power of this API we recommend using the integration API instead.

The API can also be browsed from your favorite web browser as most links are
hyperlinks. E.g. using Chrome and installing one of the many JSON/REST
plugins (JSONview) will give you a JSON interface with clickable links where
you can move forward, backwards etc. through search answers.

The entity API is available to all customers with a premium/complete or higher
subscription free of charge for up to 20 calls/minute. To increase the limit
beyond 20 calls/minute a separate agreement /license is required.

Transactional rules

A single call to the entity API is fully transactional, a failure during processing
will result in a database rollback of all data changed during that call. Creating
or updating entities may result in one or more audit logs being written.

Security

The user must first authenticate as described in the overview using an API key.

Once the key has been validated, and the domain name checked the user as-
sociated with the API key is checked for the proper permissions. Initially the
user must possess the “Remote call: Read” and/or the “Remote call: Write”
permissions (depending upon the HTTP request verb).


overview.html

Once the user passes this check the role that they possess must also contain
permissions to access the requested entity type. The permissions granted to that
role for that object type dictates the users access. The available permissions are:

e bSelect, the ability to query data from this type of object. Without this
permission, all read/GET requests are denied.

e blnsert, the ability to create new entries. Without this permission, all
HTTP POST requests are denied.

e bUpdate, the ability to update an existing object. Without this permission,
all HTTP PUT requests are denied.

e bDelete, the ability to delete an object. Without this permission, all HT TP
DELETE requests are denied.

Callbacks/Webhooks

To avoid having to poll the API for changes the system supports callbacks
(webhooks). A webhook is a call from Kodmyran Commerce to an external party
whenever a pre-determined condition occurs within Kodmyran Commerce. They
are typically triggered as the result of a new object or changes to an existing
object.

Whenever an object is declared dirty the entity type is compared to the pre-
registered webhooks, if a match is found a call is dispatched to the webhook
URL. The webhook itself is a HTTP POST operation containing a header block
and a block optionally containing the entire business object (determined during
webhook registration).

Please observe that the outbound webhook is subject to a timeout of roughly 5
seconds after connecting. That means the amount of work performed directly in
the webhook receiver should be limited. Typically, the receiver should add the
work to an internal queue for later processing and respond with a HT'TP 200
message, or in the case of quick updates complete the work and respond with a
200 message. Responding with a non 2xx message will indicate to Kodmyran
Commerce that the message could not be processed and the system will attempt
re-delivery at a later time. If the message has been re-delivered too many times
the webhook will be put into a paused state and no more webhooks will be sent
until manually re-enabled. Depending upon the length of time between the initial
send and the pause, messages may be lost in which case a full resynchronization
may be required.

The programmer building an integration should never ever trust the delivery of
a webhook, it is provided as a means to quickly synchronize two systems - but
the webhook may be lost or delayed. The webhook is considered a hint and not
a synchronization primitive.



To ensure that webhooks do not create loops they are only sent to webhooks
registered by users other than the one that caused the initial triggering. Hence
it is very important that different integrations do not re-use the same API key.

The system will never make multiple simultaneous calls for the same webhook,
they will be executed in a single-threaded fashion one by one. For the integration
API a single webhook call may contain multiple objects however, in that case
they should always be executed in the order received.

Base endpoint
The full API is available at the endpoint:
https://testaccount.shop4sale.se/admin/api/entity

Accessing the URL above directly with your browser will give you a list of entities
the system supports, however it does not mean that you can always access that
type of entity. The user permissions have not been applied at this stage.

Best practice

To simplify troubleshooting we recommend that you set the User-Agent HTTP
header in your request to something that uniquely describes your integration.
Keep the text short and to the point and use english language. Do not include
special characters like umlaut and avoid very long descriptions.

Do not include fields unless they are required or have been modified, a fields
value will be retained within Kodmyran Commerce. The only exception to this
rule applies to sub-entitites as described further down in this document.

Never include the object ID in a top-level object upon update or creation
(e.g. omit the ‘id’ field at top-level)

Many fields within the builtin objects are read-only, read-only upon update or
virtual (derived) - these fields will not allow write operations and the call will
fail.

Any return code other than HTTP code 200-299 is an invalid request.
Searching

Each type of entity can then be appended to the URL to make a search within
that space, e.g. to get a list of all users you can access:



https://testaccount.shopé4sale.se/admin/api/entity/user

The response is divided into two sections, a meta section and an objects section.
The meta section will contain the call status (should be “OK”), the number of
objects in total, the current offset and the count of objects on this page.

The objects section will contain a list of all the requested objects, up to the
query limit. If not set the query limit defaults to a maximum of 20 entries.

You can pass parameters to this URL to control the response you receive, param-
eters starting with an underscore are special and are treated as meta parameters.
The meta parameters are identical regardless of the type of entity. Parameters
without an initial underscore are query parameters and can, optionally, contain
a leading command for larger than, less than and similar operations. The actual
parameters depend upon the entity type and can be seen in the Swagger interface
definition.

Field Description

_limit  Controls the number of entries returned per page. Defaults to 20, maximum 100.

_order  Controls the ordering of the results. Specify the field name as the value. By prefixing the value wit
_offset  The starting offset of the search. Defaults to O.

_fields A list of fields to include in the search response in addition to the entity ID and URL which are alv
_tbldef A special use for the GUI tools that can invoke a pre-setup table definition. This is not intended fo

The supported prefixes are listed below (for query parameters only, not valid for
meta parameters). If no prefix has been specified the comparison is assumed to
be that of equality.

Prefix Description

> Larger than, only makes sense for numerical and date/timestamp fields.

>= Larger than or equal, only makes sense for numerical and date/timestamp fields.
< Less than, only makes sense for numerical and date/timestamp fields.

<= Less than or equal, only makes sense for numerical and date/timestamp fields.

- Not

~ Like, apply an SQL style LIKE search. Do not include wildcard characters in the string. This makes




Please note that the same query parameter can occur multiple times with different
prefixes, e.g. to search for entities within a specific time range.

Once you have made a search and isolated an entity for deeper inspection you
can obtain every detail of that entity by appending the ID to the endpoint, the
example below fetches the user with 1D 123:

https://testaccount.shopé4sale.se/admin/api/entity/user/123

The precise design of such a response depends upon the entity type, but these
fields are always present:

Id The entity ID

Generation The entity generation, initially 1. Incremented by 1 for each commit that changes the object.
Created The timestamp for when the entity was created in ISO 8601 format
Changed The timestamp for when the entity was last changed in ISO 8601 format

A GET to this endpoint will return the object in JSON form.

A POST to this endpoint will return an error, as it contains an entity ID. To
make a POST request you will have to use the end-point level directly above
(e.g. /admin/api/entity/user in this example).

A PUT to this endpoint will update the object and return a 200 response on
success.

Search and retrieve more than the default fields

A common operation is to search for all entities matching some criteria and then
extracting a certain number of fields, in order to avoid first having to make a
search request and then fetch each individual item separately the API provides
a _ fields parameter. Using the fields parameter the client can request specific
fields straight away in the search response.

Say for example we want to search for all users with a firstname=‘Erik’ and
retrieve their last name. Instead of first finding all entity IDs matching the search
and retrieving their last name one by one, we can do it all in one operation:

GET https://testaccount.shop4sale.se/admin/api/entity/user?firstname=Erik&_fields=lastname

{
"meta": {
"status":"0OK",



"count":20,

"offset":0,

"totalcount":189,
"nextpage":"https://testaccount.shop4sale.se/admin/api/entity/user/?firstname=Erik&

},
"objects": [
{
"id":680,
"url":"https://testaccount.shop4sale.se/admin/api/entity/user/680",
"lastname": "Nordgren"
},
{
"id":707,
"url":"https://testaccount.shop4sale.se/admin/api/entity/user/707",
"lastname": "Andersson"
},
{
"id":746,
"url":"https://testaccount.shop4sale.se/admin/api/entity/user/746",
"lastname": "Svensson"}
},
]

This avoids a performance bottleneck refered to as row-at-a-time, and also reduces
the number of calls you need to make increasing performance significantly.

If you need to include more than one additional field in the responses you can
provide a comma separated list to the _fields input parameter.

Sub-entities

Sub-entities are normal entities that are linked to another (parent) entity. Typical
examples are e.g. orderrows for an order. Many types of entities in Kodmyran
Commerce contain these linked sub-entities in their response, when they do
they will follow a similar structure to regular entities and will include their own
created, changed, id and generation fields.

When you submit an existing entity for change/update and include a list of
rows these will update/replace the current rows. A row ID not included in the
update will be removed. Hence if you e.g. want to update an order and add a
new orderrow you must also include all existing orderrows in the call or the old
rows will be removed.



Note that e.g. orderrows can be accessed either as a sub-entity to an order, or
directly as an orderrow through the API.

When accessed as a sub-entity the permissions required are those of the parent
entity. Hence in the order/orderrow example only the order entity needs to have
write permissions granted even when changing an orderrow.

Create or update an object

To create an object you must use the HTTP VERB ‘POST’, to modify an
existing object you instead use the HTTP verb ‘PUT". Unlike some other REST
APIs we do not use the PATCH verb (PUT provides identical functionality). For
PUT and POST operations the system requires that you include a meta header
block describing base information about the request, such as the language in
use, or if it is intended for a particular multishop. You then provide the actual
object wrapped within a request block.

When creating an object you issue your request to the base level for that entity,
e.g.

https://testaccount.shop4sale.se/admin/api/entity/user

When updating an object you issue your request to the URL for that entity,
e.g. for user 123:

https://testaccount.shopd4sale.se/admin/api/entity/user/123
An example request to create a new user may look similar to this:

POST https://testaccount.shop4sale.se/admin/api/entity/user
X-API-Key: 12345667890ABCDEF

Content-Type: application/json

User—-Agent: The Fred Flintstone Connector

{
"meta": {
"storeid": 1,
"language": "sv"
3,
"request": {
"usertype": "user",

"company": "Stora Bolaget AB",
"pno": "556767-4444",
"vatno": "SEb56767444401",



"firstname": "Big",

"lastname": "Boss",

"address": "Storgatan 1",
"extaddress": "Box 123",
"countryid": 1,

"zipcode": "12345",

"city": "Lillby",

"email": "big.boss@storabolaget.se",
"telephone": "070-4112233",
"languageid": 1

}

The system will respond according to the example at the end of this document.
A request to update the same user will have the same type of blocks as described
above, but the URL to PUT to is different.

Deletions

When you call the DELETE method of an entity that entity will undergo a
reference check. If references are found the deletion will be denied. This matches
the behavior of the low-level framework.

Responses

You can find example responses in this section. If an error occurs the system
will respond with a 3xx, 4xx or 5xx message. A 4xx message indicates that the
request was denied, either because you lack permissions or that the data does
not conform with the entity model. A 5xx message indicates a technical error
and generally means there is a more severe error.

Creating a new entity

The API will respond with a HT'TP 201 message and a JSON object.

{
"callStatus": "OK",
"entityid": 123,
"url": "https://testaccount.shop4sale.se/admin/api/entity/user/123",
"created": "2017-05-16T20:56:32+01:00",
"changed": "2017-05-16T20:56:32+01:00",
"generation": 1
}



Update an existing entity

The API will respond with a HT'TP 200 OK message and a JSON object

{
"callStatus": "OK",
"changed": "2017-05-16T20:57:38+01:00",
"generation": 2

3

Getting a full response

For PUT and POST operations you will by default get a response with various
metadata such as timestamps, the generation etc but not the complete object.
In most cases this is more than enough, however if your code requires the entire
object you can request a full response by setting the fullresponse meta parameter
to the value true.

The entire object will then be returned under the object key in the response.

Inbound request:

{
"meta": {
"fullresponse": true
3,
"request": {
3
3

Response from API:

{
"callStatus": "OK",
"entityid": 123,
"url": "https://testaccount.shop4sale.se/admin/api/entity/user/123",
"created": "2017-05-16T20:56:32+01:00",
"changed": "2017-05-16T20:56:32+01:00",
"generation": 1
"object": {
}
}



	Introduction
	Transactional rules
	Security
	Callbacks/Webhooks
	Base endpoint
	Best practice
	Searching
	Search and retrieve more than the default fields

	Sub-entities
	Create or update an object
	Deletions
	Responses
	Creating a new entity
	Update an existing entity
	Getting a full response


